Abstract

Magnetic algal carbon supported flower-like sulfidated nanoscale zerovalent iron (S-nZVI/AC) composite was firstly synthesized through one-pot method and used for removing bromate. More than 98% of bromate was efficiently removed within 48 min. Compared with the individual S-nZVI treatment, the removal rate constant of the S-nZVI/AC composite treatment was almost doubled. The removal rate constant of bromate increased three times when the S/Fe ratio increased from 0 to 0.3. According to the synergistic effect between the algal carbon and S-nZVI on the bromate removal, the introduction of carbon and sulfide-modification of nZVI were efficient modification approaches for enhancing the removal of bromated using S-nZVI/AC composite. The removal efficiency of bromate increased sharply to more than 98% when the composite dose increased from 0 to 40 mg L−1. The removal rate constant increased linearly from 0.08 to 0.31 min−1 when the initial concentration increased from 50 to 200 μg L−1. The removal efficiency of the bromate still maintained at high level (>85%) after 5 recycles of the S-nZVI/AC composite. Bromate was readily removed under neutral or slight acidic conditions. The bromate removal rate constant increased from 0.10 to 0.27 min−1 when the temperature increased from 15 to 35 °C. The bromate removal rate constant increased almost 4 times when the ionic strength increased from 0 to 3 g L−1. This study demonstrates that S-nZVI/AC composite synthesized through one-pot method is a promising water purification material for efficient removal of bromated disinfection by-product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.