Abstract
Molecularly imprinted polymers (MIPs) are synthetic polymers with predetermined selectivity for a given analyte. One major problem associated with MIPs is the inaccessibility of a large fraction of the recognition sites that remain buried within the polymeric matrix. To address this problem, the high selectivity imparted by the imprinting technique and the porosity of three-dimensional (3D) graphene oxide (GO)-based porous materials were utilized in this work to prepare a 3D GO-based Cu(II)-ion-imprinted material (hereafter denoted as IIM) via one-pot reactions of GO, chitosan (CS), and glutaraldehyde in the presence of Cu(II). Results of equilibrium binding experiments show that IIM has a high template-ion binding capacity (1.75 mmol g−1) and good imprinting factor (2.19). Further, results of selectivity tests indicate that IIM has a high Cu(II)-recognition ability. IIM also has a fast binding rate and satisfactory reusability. In addition, the Langmuir isotherm model was well fitted with the experimental data, indicating the monolayer adsorption of Cu(II) ions. The present work provided a convenient approach to prepare 3D GO-based imprinted materials that are promising for enrichment or recycling of target compounds from wastewater.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Environmental Science and Health, Part A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.