Abstract
A series of bimetal-doped beta zeolites were prepared via a simple post-synthesis strategy including dealumination and metal ion incorporation. The incorporation of ferromagnetic metals into lattice sites of Sn-beta was evidenced by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS). The high reduction temperature (1094 K) of cobalt in Co-Sn-beta zeolite, as determined by temperature programmed reduction (TPR), confirms that Co interacts strongly with the zeolite support, consistent with lattice tetrahedral (Td) coordination. Co-doped Sn-beta zeolite was found to be a promising Lewis acid catalyst together with a carbon solid acid for the conversion of furfural to isopropyl 4-oxovalerate (i-PL) and γ-valerolactone (GVL). The highest total yield of 92.02% was obtained after reaction for 16 h at 160 °C, including 48.3% i-PL, 37.7% GVL, and 6.0% levulinic acid (LA). The catalysts could also be applied as robust catalysts in glucose conversion to 5-hydromethylfurfural. Zeolite catalysts designed and prepared by this strategy contain multiple metals, enhancing their flexibility and adjustability of function via changing the species and ratio of metals to derive optimized catalysts for specific reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.