Abstract

Because 2,4,6-trinitrophenol (TNP) and its analogues such as 2,4,6-trinitrotoluene (TNT) possess similar chemical structures and properties, the reliable and accurate detection of TNP from its analogues still remains a challenging task. In the present work, a selective and sensitive method based on the water-soluble silicon nanoparticles (SiNPs) for the determination of TNP was established. The SiNPs with good thermostability and excellent antiphotobleaching capability were prepared via a simple one-pot method. Compared with the synthesized time of other nanomaterials with respect to the detection of TNP, this method avoided a multistep and time-consuming synthesis procedure. Significantly, the fluorescence of the SiNPs could be remarkably quenched by TNP via an inner filter effect. A wide linear range was obtained from 0.02 to 120 μg/mL with a limit of detection of 6.7 ng/mL. The method displayed excellent selectivity toward TNP over other nitroaromatic explosives. The proposed fluorescent method was successfully applied to the analysis of TNP. Moreover, a straightforward and convenient fluorescent filter paper sensor was developed for the detection of TNP, providing a valuable platform for TNP sensing in public safety and security.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.