Abstract

Chlorhexidine (CHX) is a widely used antiseptic in various infection control practices. In this work, we have developed biodegradable mesoporous organosilica nanoparticles (MONs) through a one-pot synthesis by employing CHX as a bifunctional agent that not any acts as a cationic template to form the structure of mesopores but also serves as a broad-spectrum antiseptic. The resulting CHX@MONs exhibit a relatively high CHX content and glutathione (GSH)-responsive release of CHX via a matrix-degradation-controlled mechanism, leading to comparable antibacterial effects with CHX on both Escherichia coli and Staphylococcus aureus. Furthermore, the effective antibacterial concentration of CHX@MONs shows less cytotoxicity toward normal cells. Our findings will help increase the use of CHX as an antiseptic agent, especially for responsive drug release upon bacterial infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call