Abstract

We report a simple glucose-mediated hydrothermal method for gram-scale synthesis of nearly monodisperse hybrid SnO2 nanoparticles. Glucose is found to play the dual role of facilitating rapid precipitation of polycrystalline SnO2 nanocolloids and in creating a uniform, glucose-derived, carbon-rich polysaccharide (GCP) coating on the SnO2 nanocores. The thickness of the GCP coating can be facilely manipulated by varying glucose concentration in the synthesis medium. Carbon-coated SnO2 nanocolloids obtained after carbonization of the GCP coating exhibit significantly enhanced cycling performance for lithium storage. Specifically, we find that a capacity of ca. 440 mA h/g can be obtained after more than 100 charge/discharge cycles at a current density of 300 mA/g in hybrid SnO2-carbon electrodes containing as much as 1/3 of their mass in the low-activity carbon shell. By reducing the SnO2-carbon particles with H2, we demonstrate a simple route to carbon-coated Sn nanospheres. Lithium storage properties of the latter materials are also reported. Our results suggest that large initial irreversible losses in these materials are caused not only by the initial, presumably irreversible, reduction of SnO2 as generally perceived in the field, but also by the formation of the solid electrolyte interface (SEI).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.