Abstract

A bio-inspired layered material of reduced graphene oxide (RGOs) and calcium carbonate was synthesized via a one-pot strategy in DMF/H2O mixed solvent. The experimental results show that the product is a layered material of wrinkled RGOs networks and micron-sized calcium carbonate particles with uniform granular diameter and homogeneous morphology, which are distributed between the layered gallery of the graphene scaffold. The polymorph and the morphology of the in-situ produced calcium carbonate particles can be manipulated by simply changing the temperature scheme. Besides, the graphene oxide was reduced to a certain extent, and the hierarchical wrinkles were generated in the RGOs layer by the in-situ formation of the calcium carbonate particles. This work provides a facile and controllable strategy for synthesizing layered material of RGOs and carbonates, and also presents a platform for making three-dimensional porous wrinkled RGOs networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.