Abstract

Shape control has proven to be a powerful and versatile means of tailoring the properties of Bi2Se3 nanostructures for a wide variety of applications. Here, three different Bi2Se3 nanostructures, i.e., spiral-type nanoplates, smooth nanoplates, and dendritic nanostructures, were prepared by manipulating the supersaturation level in the synthetic system. This mechanism study indicated that, at low supersaturation, defects in the crystal growth could cause a step edge upon which Bi2Se3 particles were added continuously, leading to the formation of spiral-type nanoplates. At intermediate supersaturation, the aggregation of amorphous Bi2Se3 particles and subsequent recrystallization resulted in the formation of smooth nanoplates. Furthermore, at high supersaturation, polycrystalline Bi2Se3 cores formed initially, on which anisotropic growth of Bi2Se3 occurred. This work not only advances our understanding of the growth mechanism but also offers a new approach to control the morphology of Bi2Se3 nanostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.