Abstract

Azoline moieties in the backbones of peptidic naturalproducts are important structural motifs that contribute to diverse bioactivities. Some azoline-containing peptides (Az-peptides) are produced from ribosomally synthesized precursor peptides, in which cysteine, serine, and threonine residues are converted to their corresponding azolines by posttranslational modification through a cyclodehydratase. We have devised an invitro biosynthesis system of Az-peptides, referred to as the FIT-PatD (flexible in vitro translation) system, by the integration of a cell-free translation system with the posttranslational cyclodehydratase PatD. This system enabled the "one-pot" synthesis of a wide variety of Az-peptide derivatives expressed from synthetic DNA templates. The FIT-PatD system also facilitated mutagenesis studies on a wide array of precursor peptide sequences, unveiling unique invitro substrate tolerance of PatD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.