Abstract

A hierarchical microporous-mesoporous metal-organic framework of HKUST-1(Cu)-encapsulated phosphotungstic acid (HPW) material, referred to as HPWs@Meso-HKUST-1, is prepared by a one-pot synthesis method using cetyltrimethylammonium bromide as the supramolecular template. The addition of HPWs to the synthesis mixture of hierarchical porous HKUST-1 results in the direct encapsulation of HPWs inside the mesopores of the HKUST-1 structure, with a homogeneous distribution over the HKUST-1 crystals, which is confirmed by XRD, FT-IR, N2 adsorption, UV-Vis DRS, and TEM. FT-IR-CO adsorption experiments indicated that additional Lewis acid sites were present in the HPWs@Meso-HKUST-1 sample. The novel heterogeneous catalyst demonstrates excellent catalytic performance for the selective oxidation of cyclopentene (CPE) to glutaraldehyde (GA) using tert-butyl hydroperoxide and acetonitrile (MeCN) as the oxidant and solvent, respectively. The high activity of the catalyst is attributed to the mesostructure of the catalyst and the nature and appropriate abundance of the HPWs—being highly dispersed with the addition of Lewis sites. After a reaction for 36 h, the 30% wt% HPWs@Meso-HKUST-1 catalyst exhibits a CPE conversion of 92.5% and a high GA yield of 73%. Furthermore, the HPWs@Meso-HKUST-1 material is sufficiently stable to prevent the leaching of HPWs, and behaves as a true heterogeneous catalyst that can be repeatedly recycled without sustaining a loss of activity and selectivity in the selective oxidation of CPE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call