Abstract

Magnetic solid-phase extraction (MSPE) based on molecularly imprinted nanoparticles (MINs) has attracted wide attention in sample pretreatment because it combines the merits of high selectivity and quick extraction procedures. However, laborious, time and solvent-consuming steps were involved in the synthesis of magnetic imprinted particles in existing approaches. To circumvent this dilemma, a green and rapid "one-pot" strategy was proposed to prepare MINs. Halosulfuron-methyl (HSM) was selected as a template molecule, and Gaussian 09 simulation software was employed to screen the 2,4,6-trivinylboroxin pyridine complex (TBP) as a functional monomer. Subsequently, the fabrication was simply conducted using a hydrothermal approach by mixing self-assembly solution of TBP-HSM, Fe3+, Fe2+, dimethyl sulfoxide, and azobisisobutyronitrile in one-pot with a total reaction time of 3.0 h. Various characterized results well evidenced the successful imprint of HSM and the resultant HSM-MINs presented satisfying superparamagnetism and saturation magnetism. Under the optimized parameters, the obtained HSM-MINs displayed good recognition capability and selectivity toward HSM (recognition coefficient was 2.60), as well as a satisfactory saturation adsorption capacity (1781 μg/g). The quantification of sulfonylurea herbicides at trace levels in environmental water and soil samples was selected as a paradigm to demonstrate the practicality and reliability of HSM-MINs/MSPE. The present study provides a convenient, reliable, and green approach for fabricating a magnetic molecular-imprinting adsorbent for MSPE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.