Abstract

It is a great challenge to develop simple approach to construct three-dimensional (3D) bimetallic alloyed nanoframes (NFs) with tunable surface structures, albeit with the availability of noble metal NFs in catalysis. Herein, a one-pot solvothermal method was employed for scalable preparation of uniform hollow PtCu rhombic dodecahedron nanoframes (PtCu RDNFs) in the presence of cetyltrimethylammonium chloride (CTAC), where diglycolamine (DGA) served as the co-reductant and co-structure director. The above architectures had the larger electrochemically active surface area (ECSA, 36.85 m2 g−1Pt) than that of commercial Pt black (15.85 m2 g−1Pt), along with the improved catalytic characters for hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) in acid electrolytes alternative to those of Pt black. It demonstrates great potential applications of PtCu RDNFs in fuel cells and beyond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call