Abstract
Carbon-coated silicon nanoparticles were in situ synthesized via a facile one-pot solution synthesis method, which delivered an excellent cycling performance with a retained discharge capacity of 1120 mA h g-1 and almost no capacity decay after 500 cycles at 2 A g-1 when evaluated as an anode material in lithium ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.