Abstract

Sample preparation remains a bottleneck in the rapid and reliable quantification of gibberellins (GAs) for obtaining an insight into the physiological processes mediated by GAs. The challenges arise from not only the extremely low content of GAs in complex plant matrices, but the poor detectability of GAs by mass spectrometry (MS) in negative ion mode. In an effort to solve these urgent difficulties, we present a spatial-resolved analysis method to investigate the distribution of GAs in tiny plant tissues based on a simplified one-pot sample preparation approach coupled with ultrahigh-performance liquid chromatography-tandem MS. By integrating extraction and derivatization into one step, target GAs were effectively extracted from plant materials and simultaneously reacted with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide, the sample preparation time was largely shortened, the probability of sample loss was minimized and the detection sensitivity of MS was also greatly improved compared with underivatized GAs. Under optimal conditions, the method was validated from the quantification linearity, limits of detection and limits of quantification in the presence of plant matrices, recoveries, and precision. With the proposed method, 15 endogenous GAs were detected and, among these, 11GAs could be quantified in 0.50mg fresh weight (FW) wheat shoot samples, and fiveGAs were quantified in only 0.15mg FW developing seed samples of Arabidopsis thaliana. The distribution patterns of GAs along both the non-13-hydroxylation pathway and the early 13-hydroxylation pathway in a single shoot of germinating wheat, rice and maize seeds were finally profiled with a spatial resolution down to approximately 1mm2 .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call