Abstract

A room-temperature nanocarving strategy is developed for the fabrication of complex gold nanoplates having corolla- and propeller-like architectures. It is based on the simultaneous growth and etching of gold nanoplates in aqueous solution, which occur in the course of photoreduction of Au(OH)(4)(-) ions. The presence of bromide ion, poly(vinylpyrrolidone) (PVP), and molecular oxygen is indispensable, where bromide ions play multiple roles. First, they promote formation of nanoplate structures by forming adlayers on the fcc(111) surface. Second, they facilitate oxidative dissolution of gold nanocrystals by converting the oxidized Au(I) species to soluble AuBr(2)(-) ions, which lead to the formation of ultrathin nanocrevasses. PVP also stabilizes the nucleation of gold nanoplates. Although the overall reactions proceed in one-pot, the crystal growth and etching show interplay and occur with different kinetics due to changes in the concentration of Au(OH)(4)(-) and other species with time. Corolla- or propeller-like gold nanoplates formed under these conditions are single-crystalline, as indicated by selected area electron diffraction patterns and the observation of moire fringes. The morphology of corolla- or propeller-like gold nanoplates is controllable depending on the concentration of bromide ion and PVP in the aqueous mixture. On the basis of these results, a preliminary mechanism is proposed which involves the concurrent crystal growth and oxidative etching on the surface of nanocrystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.