Abstract

High electrical conductivity is a vital factor to improve electrochemical performance of energy storage materials. In this work, bimetallic nickel cobalt phosphides with high electrical conductivity and different Ni/Co molar ratios are directly fabricated via a simple hydrothermal method. The samples show uniform teeny nanoparticles morphology and excellent electrochemical performance. The NiCoP sample exhibits the most prominent specific capacity (571Cg−1 at 1Ag−1) and out-bound rate characteristic (72.8% capacity retention with a 20-fold increase in current densities), which can be attributed to the good crystallinity, larger specific surface area, and noteworthy intrinsic conductivity that convenient for fast electron transfer in active material and fleet reversible faradic reaction characteristics. Simultaneously, an optimal asymmetric supercapacitor based on NiCoP as positive and activated carbon as negative is assembled. It can achieve a high energy density of 32Whkg−1 (at a power density of 0.351kWkg−1) and prominent cycling stability with 91.8% initial capacity retention after 3000 cycles. It demonstrates that nickel cobalt phosphides are promising as energy storage materials. The study could also pave the way to explore a new class of bimetallic phosphides materials high electrical conductivity for electrochemical energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.