Abstract

Cerium oxide nanoparticles (CeO2 NPs), which have powerful antioxidant properties, are promising nanomaterials for the treatment of diseases associated with oxidative stress. The well-developed surface of CeO2 NPs makes them promising for use as a multifunctional system for various biomedical applications. This work demonstrates a simple approach that allows the direct formation of a molecular fluorophore on the surface of CeO2 NPs using a simple one-pot hydrothermal synthesis. Thus, we were able to synthesize CeO2 NPs of ultra-small size ∼2 nm with a narrow distribution, highly stable fluorescence, and a quantum yield of ∼62%. UV-visible transmission studies revealed that the resulting CeO2 NPs exhibited fast autogenerative catalytic reduction. In vitro results showed high biocompatibility of CeO2 NPs; their internalization occurs mainly in the region of cell nuclei. Thus, the resulting NPs have the necessary parameters and can be successfully used in biovisualization and therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call