Abstract
Traditional macromolecules or nanoscale Mn2+ chelate-based magnetic resonance imaging (MRI) contrast agents (CAs) suffer from complicated and laborious synthesis processes, relatively low kinetic stability and T1 relaxivity, limiting their clinical applications. Herein, we fabricated a series of kinetically inert Mn2+ chelate-backboned polymers, P(MnL-PEG), through a facile and one-pot polymerization process. Particularly, P(MnL-PEG)-3 demonstrates a significantly higher T1 relaxivity of 23.9 Mn mM-1 s-1 at 1.5 T than that of previously reported small molecules and macromolecules or nanoscale Mn2+ chelate-based CAs. Due to its high T1 relaxivity, extended blood circulation, hepatocyte-specific uptake, and kidneys metabolism, P(MnL-PEG)-3 presents significantly enhanced contrast in blood vessel, liver, and kidneys imaging compared to clinical Gd3+-based CAs (Gd-EOB-DTPA and Gd-DOTA) at a dosage of 0.05 mmol Mn/Gd kg-1 BW, and can accurately diagnose orthotopic H22 liver tumors in vivo in animal models. We anticipate that this work will promote the development of clinically relevant MRI CAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.