Abstract

This study presents a versatile and efficient method to synthesize large-size lead sulfide (PbS) quantum dots (QDs) that display emission in the short-wave infrared (SWIR) region, using accessible and stable diethylammonium diethyldithiocarbamate (C2)2DTCA and octylammonium octyldithiocarbamate (C8DTCA) as sulfur sources. As these sulfur sources enable the formation of well-dispersed, large-size PbS QDs in a very convenient way, this method can further be taken up for scale-up studies. Importantly, this approach allows precise control over QD sizes, thereby enhancing their SWIR optical properties. By adjusting the hot injection temperatures and sulfur source concentrations, different synthesis routes are explored, providing flexibility for the desired QD characteristics. The results presented here offer a promising opportunity to leverage the synthesized PbS QDs in applications such as optoelectronics, sensors, and imaging technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.