Abstract

Tandem heterogenous catalysis of bimetallic Cu-Pd on UiO-66(NH2) that were incorporated into sulfonated graphene oxide (Cu-Pd/UiO-66(NH2)@SGO or Cu-Pd/US) was investigated for the one-pot, direct conversion of di- and polysaccharides into 2,5-dimethylfuran (2,5-DMF) without separation of reaction intermediates. In the absence of a homogeneous acidic catalyst, consecutive reactions of glycosidic bond cleavage, isomerization, dehydration, and hydrogenation/hydrogenolysis were preceded by the synergistic effect of a multifunctional Cu-Pd/US catalyst. The strength and ratio of Brønsted and Lewis acid sites by adjusting UiO-66(NH2) to SGO ratios resulted in high-yield 5-(hydroxymethyl)furfural (5-HMF) through sequential glycosidic bond cleavage, isomerization, and dehydration of sucrose. Unlike monometallic Cu and Pd, bimetallic Cu-Pd promoted consecutive COH hydrogenolysis and CO hydrogenation of reaction intermediates, producing 2,5-DMF with a high yield of 73.4% during the one-pot conversion of sucrose at 200 °C and 1 MPa H2 for 3 h. When starch was converted over Cu-Pd/US, 2,5-DMF was formed with 53.6% yield. Direct cellulose conversion into 2,5-DMF with a yield of 29.8% was achieved in the presence of 0.01 M HCl and Cu-Pd/US. The presence of the amino functional group (-NH2) in the UiO-66 framework was beneficial for improving the feed conversion and maintaining catalyst recyclability up to five times with almost no activity loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call