Abstract

The coconversion of two kinds of waste materials, plastics and CO2, into a single value-added product is an innovative and challenging endeavor that simultaneously achieves the upcycling of plastic waste and reduces CO2 emissions. Herein, we report a one-pot, two-step catalytic process for transforming polyesters, such as poly(glycolic acid), carbonate, and water, into sodium formate with a high yield of 79%, using a commercial Pd/C catalyst. This process involves the aqueous-phase reforming of polyester with water at 250-270 °C and the hydrogenation of NaHCO3 at 150 °C, utilizing H2 generated during the reforming process. Notably, no external H2 or other reactive reagents are required. This strategy can be applied for the coconversion of poly(ethylene terephthalate) (PET), poly(butylene-adipate-co-terephthalate) (PBAT), and commercial biodegradable plastic bags with Na2CO3 obtained from CO2 capture via a NaOH solution, opening up a new path for "turning trash into treasure".

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call