Abstract

A newly developed two-step catalytic pyrolysis process (TSCP) based on poly-generation technology is proposed to convert reed straw (RS) into phenol-rich bio-oil, hydrogen-rich gas, and solid carbon degradation material over iron-loaded activated carbon. The effects of the first step pyrolysis temperature (T1) and catalyst composition on the product distribution and target product selectivity were investigated. When T1 was 350 °C and 10% Fe/AC catalyst was selected, the concentration of phenolic compounds and H2 peaked at 63.87 area% and 63.29 vol%, respectively. The iron-loaded activated carbon catalysts promoted the decarboxylation and decarbonylation reactions of cellulose and hemicellulose decomposition products, as well as the demethylation and demethoxylation reactions of lignin for the selective production of phenolic compounds and hydrogen gas. In addition, 94.7% quinclorac (10 mg/L) removal was achieved with 0.2 g/L 10% Fe/AC catalyst-doped pyrolysis carbon and 2 mM PMS within 90 min. This study could realize the high-value comprehensive utilization of reed and provide a reference for the full quantitative utilization of other agricultural and forestry wastes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call