Abstract

A novel concept for the metal-free synthesis of block copolymers combining enzymatic ring-opening polymerization and nitroxide-mediated living free-radical polymerization from a bifunctional initiator is presented. Block copolymers comprising a poly(styrene) and poly(caprolactone) block were obtained in two consecutive polymerization steps (macroinitiation) and in a one-pot cascade approach without intermediate transformation or work up step. By optimization of the reaction conditions a high selectivity of both transformations could be realized in the cascade polymerization, resulting in high block copolymer yields. The same concept was successfully applied to enzymatic resolution polymerization of racemic 4-methyl-ε-caprolactone combined with the living free-radical polymerization of styrene yielding block copolymers with high enantiomeric excess in the 4-methyl-ε-caprolactone block.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.