Abstract
Photocatalytic technology for hydrogen evolution from water splitting and pollutant degradation is one of the most sustainable methods. Here, the graphene/g–C3N4–Co composite materials have been prepared by one-pot calcination method. The results show that g-C3N4 grow on the surface of graphene and form a sandwich structure, meanwhile, the introduction of Co increases the active sites, which promotes the photocatalytic performance. The influences of graphene and Co content on photocatalytic activity were also studied by UV–visible spectrophotometry (DRS), photoluminescence spectroscopy (PL), photocurrent, degradation MB, and hydrogen production. The apparent reaction rate constant k of graphene/g–C3N4–Co (3%) is 0.946 h−1, which is 4.90 and 2.18 times faster than g-C3N4 and graphene/g-C3N4, respectively. And the hydrogen production rate of graphene/g–C3N4–Co (3%) (892.3 μmol h−1 g−1) is 3.53 and 1.61 times higher than g-C3N4 and graphene/g-C3N4, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.