Abstract

Covalent surface modification of silica nanoparticles (SNPs) offers great potential for the development of multimodal nanomaterials for biomedical applications. Herein, we report the synthesis of covalently conjugated bifunctional SNPs and their application to in vivo multimodal imaging. Bis(methallyl)silane 15 with cyclopropene and maleimide, designed as a stable bifunctional linker, was efficiently synthesized by traceless Staudiger ligation, and subsequently introduced onto the surface of monodispersed SNPs via Sc(OTf)3-catalyzed siloxane formation. The bifunctional linker-grafted SNP 20 underwent both thiol-conjugated addition and tetrazine cycloaddition in one pot. Finally, positron emission tomography/computed tomography and fluorescence imaging study of dual functional SNP [125I]28 labeled with NIR dye and 125I isotope showed a prolonged circulation in mice, which is conducive to the systemic delivery of therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.