Abstract

The carbon chain extension and hydrodeoxygenation steps play critical roles in the high-energy-density hydrocarbons production. In this paper, a systematic study had been carried out to investigate one-pot aqueous phase catalytic conversion of sorbitol to gasoline (STG) over bifunctional Ni-based catalysts. Characterization technologies of N2 physisorption, X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and NH3 temperature-programmed desorption (NH3-TPD) were used to study the textural properties, phase compositions, acid behavior and morphologies of the catalysts. The catalytic performances were tested in a fixed bed reactor. It was found that the physically mixed Ni/HZSM-5 and Ni/silica-gel (mesoporous SG) catalyst realized the carbon chain extension and exhibited excellent performances on hydrodeoxygenation (HDO) reaction (46.9% of gasoline (C5–C12) yield and 45.5% of C7–C12 hydrocarbons in the gasoline products). Especially, the temperature of STG (553–593K) was lower obviously than that of the traditional methanol to gasoline (MTG) process (623–773K). It provided a novel transformation of sorbitol to long-chain alkanes by one-pot process over the bifunctional catalyst (Ni@HZSM-5/SG), wherein hydrodeoxygenation, ketonization and aldol condensation steps were integrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call