Abstract

We present the first practically realizable sidechannel assisted fault attack on PRESENT, that can retrieve the last round key efficiently using single nibble faults. The attack demonstrates how side-channel leakage can allow the adversary to precisely determine the fault mask resulting from a nibble fault injection instance. We first demonstrate the viability of such an attack model via side-channel analysis experiments on top of a laser-based fault injection setup, targeting a PRESENT-80 implementation on an ATmega328P microcontroller. Subsequently, we present a differential fault analysis (DFA) exploiting the knowledge of the output fault mask in the target round to recover multiple last round key nibbles independently and in parallel. Both analytically and through experimental evidence, we show that the combined attack can recover the last round key of PRESENT with 4 random nibble fault injections in the best case, and around 7- 8 nibble fault injections in the average case. Our attack sheds light on a hitherto unexplored vulnerability of PRESENT and PRESENT-like block ciphers that use bit-permutations instead of maximum distance separable (MDS) layers for diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.