Abstract

Anticancer peptides (ACPs) are promising antitumor resources, and developing acid-activated ACPs as more effective and selective antitumor drugs would represent new progress in cancer therapy. In this study, we designed a new class of acid-activated hybrid peptides LK-LE by altering the charge shielding position of the anionic binding partner LE based on the cationic ACP LK and investigated their pH response, cytotoxic activity, and serum stability, in hoping to achieve a desirable acid-activatable ACP. As expected, the obtained hybrid peptides could be activated and exhibit a remarkable antitumor activity by rapid membrane disruption at acidic pH, whereas its killing activity could be alleviated at normal pH, showing a significant pH response compared with LK. Importantly, this study found that the peptide LK-LE3 with the charge shielding in the N-terminal of LK displayed notably low cytotoxicity and more stability, demonstrating that the position of charge masking is extremely important for the improvement of peptide toxicity and stability. In short, our work opens a new avenue to design promising acid-activated ACPs as potential targeting agents for cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call