Abstract

Different nanocomposites between reduced graphene oxide (rGO) and Ni(OH)2 nanoparticles were synthesized through modifications in the polyol method (starting from graphene oxide (GO) dispersion in ethylene glycol and nickel acetate), processed as thin films through the liquid-liquid interfacial route, homogeneously deposited over transparent electrodes and spectroscopically, microscopically and electrochemically characterized. The thin and transparent nanocomposite films (112 to 513 nm thickness, 62.6 to 19.9% transmittance at 550 nm) consist of α-Ni(OH)2 nanoparticles (mean diameter of 4.9 nm) homogeneously decorating the rGO sheets. As a control sample, neat Ni(OH)2 was prepared in the same way, consisting of porous nanoparticles with diameter ranging from 30 to 80 nm. The nanocomposite thin films present multifunctionality and they were applied as electrodes to alkaline batteries, as electrochromic material and as active component to electrochemical sensor to glycerol. In all the cases the nanocomposite films presented better performances when compared to the neat Ni(OH)2 nanoparticles, showing energy and power of 43.7 W h kg−1 and 4.8 kW kg−1 (8.24 A g−1) respectively, electrochromic efficiency reaching 70 cm2 C−1 and limit of detection as low as 15.4 ± 1.2 μmol L−1.

Highlights

  • Different nanocomposites between reduced graphene oxide and Ni(OH)[2] nanoparticles were synthesized through modifications in the polyol method (starting from graphene oxide (GO) dispersion in ethylene glycol and nickel acetate), processed as thin films through the liquid-liquid interfacial route, homogeneously deposited over transparent electrodes and spectroscopically, microscopically and electrochemically characterized

  • Different nanocomposites between reduced graphene oxide and Ni(OH)[2] nanoparticles have been synthesized by an innovative modification in the polyol method, starting from both graphene oxide and nickel acetate as precursors, in one pot and one single step

  • The concomitant occurrence of both the synthesis of Ni(OH)[2] and the reduction of GO represent a new pathway for both reactions, in which the oxygenates groups of the GO surface can act as nucleating points for the Ni(OH)[2] nanoparticles growth, resulting in nanocomposites with a strong interaction between the components

Read more

Summary

Introduction

Different nanocomposites between reduced graphene oxide (rGO) and Ni(OH)[2] nanoparticles were synthesized through modifications in the polyol method (starting from graphene oxide (GO) dispersion in ethylene glycol and nickel acetate), processed as thin films through the liquid-liquid interfacial route, homogeneously deposited over transparent electrodes and spectroscopically, microscopically and electrochemically characterized. As the nanocomposites are composed of graphene-based materials, the sheet resistance of the thin films were measured over glass substrates and the values were 754 ± 33, 504 ± 50, 2800 ± 450 and 53000 ± 9500 kΩ □−1 for rGO, rGONi(OH)[], rGONi(OH)[2] and rGONi(OH)[2,3], respectively.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.