Abstract

Separation of Control and Data Planes (SCDP) is a desirable paradigm for low-power multi-hop wireless sensor networks requiring high network performance and manageability. Existing SCDP networks generally adopt an in-band control plane scheme in that the control-plane messages are delivered by their data-plane networks. The physical coupling of the two planes may lead to undesirable consequences. Recently, multi-radio platforms (e.g., TI CC1350 and OpenMote B) are increasingly available, which make the physical separation of the control and data planes possible. To advance the network architecture design, we propose to leverage on the long-range communication capability of the Low-Power Wide-Area Network (LPWAN) radios to form one-hop out-of-band control planes. LoRaWAN, an open, inexpensive, and ISM band based LPWAN radio, is chosen to prototype our out-of-band control plane called LoRaCP. Several characteristics of LoRaWAN such as downlink-uplink asymmetry and primitive ALOHA media access control need to be dealt with to achieve high reliability and efficiency. To address these challenges, a TDMA-based multi-channel transmission control is designed, which features an urgent channel and negative acknowledgment. On a testbed of 16 nodes, LoRaCP is applied to physically separate the control-plane network of the Collection Tree Protocol (CTP) from its Zigbee-based data-plane network. Extensive experiments show that LoRaCP increases CTP’s packet delivery ratio from 65% to 80% in the presence of external interference, while consuming a per-node average radio power of 2.97mW only.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call