Abstract

We develop a novel approach to building checks of parametric regression models when many regressors are present, based on a class of sufficiently rich semiparametric alternatives, namely single-index models. We propose an omnibus test based on the kernel method that performs against a sequence of directional nonparametric alternatives as if there was only one regressor whatever the number of regressors. This test can be viewed as a smooth version of the integrated conditional moment test of Bierens. Qualitative information can be easily incorporated into the procedure to enhance power. In an extensive comparative simulation study, we find that our test is not very sensitive to the smoothing parameter and performs well in multidimensional settings. We apply this test to a cross-country growth regression model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.