Abstract

In this work, we have presented a one-equation model for sub-grid scale (SGS) kinetic energy and applied it for an Euler–Euler large eddy simulation (EELES) of a bubble column reactor. The one-equation model for SGS kinetic energy shows improved predictions over the state-of-the-art dynamic procedure. With grid refinement, the amount of modelled SGS turbulent kinetic energy diminishes, as one would expect. Bubble induced turbulence (BIT) at the SGS level was modelled with two approaches. In the first approach an algebraic model was used, while in the other approach extra source terms were added in the transport equation for SGS kinetic energy. It was found that the latter approach improved the quantitative prediction of the turbulent kinetic energy. To the best of authors knowledge, this is the first use of a transport equation for SGS kinetic energy in bubbly flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.