Abstract

Two tautomeric forms of one-electron oxidized 2-aminoadenosine (2AA) have been produced by reactions of hydrated electrons (e aq-) with 8-bromo-2-aminoadenosine (8-Br-2AA) at natural pH, whereas only one tautomer is formed by oxidation of 2AA. Tailored experiments by pulse radiolysis and time-dependent DFT (TD-B3LYP/6-311G**//B1B95/6-31+G**) calculations allowed the definition of the reaction mechanism in some detail. The electron adducts of 8-Br-2AA protonated at C8 eject Br- and produce the two short-lived tautomers (8 and 9). The first observable species decays by first-order kinetics to produce the second intermediate, which is also obtained by oxidation of 2AA by SO4*-. The rate of tautomerization (k taut = 4.5 x 104 s-1) is strongly accelerated by phosphate and is retarded in D2O (kinetic isotope effect 7). B1B95/6-31+G** calculations showed that the tautomerization is a water-assisted process. In acidic or basic solutions, the "instantaneous" formation of one-electron oxidized 2AA or its deprotonated forms has been produced by reactions of e aq- with 8-Br-2AA. gamma-Radiolysis of 8-Br-2AA in aqueous solutions followed by product studies led to the formation of 2AA as a single product.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.