Abstract

The H2-TPR (temperature-programmed reduction) study was performed for supported copper oxide catalysts with low loading (0.5wt% as copper). Among the various kinds of support materials (γ-Al2O3, TiO2, ZrO2, SiO2, ZSM-5), alumina-supported copper oxide indicated a one-electron reduction behavior of Cu2+ into Cu+ ions in the presence of H2. The reduction of the isolated Cu2+ species in a tetragonally distorted octahedral symmetry into the low coordinated Cu+ ions was identified by means of X-ray absorption spectroscopy (XANES and EXAFS). The isolated Cu+ ions hosted by γ-Al2O3 surface were prevented from further reduction into metallic Cu0 state under reducing condition with H2 at 773K. Less dispersed supported copper oxide species were easily reduced to Cu0 metal particles with H2 at 573K regardless of the kinds of support materials. It is suggested that the one-electron redox behavior of the isolated copper oxide species over γ-Al2O3 promotes the catalytic reduction of NO with CO in the presence of oxygen on the basis of redox-type mechanism between Cu2+ and Cu+ in atomically dispersed state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.