Abstract

The one-electron redox processes of several compounds during polyoxometalate (POM)-mediated photocatalytic reactions of TiO(2) were investigated using the two-color two-laser flash-photolysis technique. The efficiency of the one-electron oxidation of aromatic sulfides by the trapped hole (h(tr) (+)) or the surface-bound OH radical (OH(s) (.)) is found to be significantly enhanced due to electron transfer from the conduction band (CB) of TiO(2) to the POM. The efficiency of the electron transfer from the CB of TiO(2) to the POM decreases in the order H(2)W(12)O(40) (6-) < SiW(12)O(40) (4-) < PW(12)O(40) (3-), that is, it depends on the reduction potential (E(red)) of the POMs. Electron injection from PW(12)O(40) (4-) in the excited state (PW(12)O(40) (4-*)) to the CB of TiO(2) was clearly observed using the two-color two-laser flash-photolysis technique. Storage of electrons in the TiO(2)/PW(12)O(40) (3-)/methyl viologen (MV(2+)) ternary system was also achieved upon two-color two-laser irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.