Abstract

Density functional theory (DFT) is a field enjoying a tremendous recent surge in popularity among theoretical and practical chemists alike because of its ability to more easily handle larger molecular systems than conventional ab initio methods. Until recently, however, assessment of the quality of the properties predicted (and therefore the charge density) from DFT had been limited mainly to dipole moments and their nuclear coordinate and electric field derivatives. This paper presents the calculated results for some of the one-electron properties of the eight small molecules (NH3, PH3, H2O, H2S, HF, HCl, CO, and N2). The properties chosen weight different regions of the charge density, from either very close in or at the nucleus (e.g., δ, the electron density at the nucleus) to regions farther out from the nucleus (e.g., the diamagnetic susceptibility 〈r2〉). It is found that properties which depend on an accurate knowledge of the electron density near to the nucleus are predicted poorly by the local density approximation (LDA), while others more dependent on the charge density farther out from the nucleus are predicted much more accurately, possibly due to cancellation of errors. Use of the LDA is therefore not recommended for ‘‘tight’’ properties; use of a functional employing gradient corrections would be more suitable for this purpose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.