Abstract
The electrochemical oxidation of ruthenocene, RuCp(2) (Cp = eta(5)-C(5)H(5)), 1, has been studied in dichloromethane using a supporting electrolyte containing either the [B(C(6)F(5))(4)](-) (TFAB) or the [B(C(6)H(3)(CF(3))(2))(4)](-) (BArF(24)) counteranion. A quasi-Nernstian process was observed in both cases, with E(1/2) values of 0.41 and 0.57 V vs FeCp(2) in the respective electrolyte media. The ruthenocenium ion 1(+) equilibrates with a metal-metal bonded dimer [Ru(2)Cp(4)](2+), 2(2+), that is increasingly preferred at low temperatures. Dimerization equilibrium constants determined by digital simulation of cyclic voltammetry (CV) curves were in the range of 10(2)-10(4) M(-1) at temperatures of 256 to 298 K. Near room temperature, and particularly when BArF(24) is the counteranion, the dinuclear species [Ru(2)Cp(2)(sigma:eta(5)-C(5)H(4))(2)] (2+), 3(2+), in which each metal is sigma-bonded to a cyclopentadienyl ring, was the preferred electrolytic oxidation product. Cathodic reduction of 3(2+) regenerated ruthenocene. The two dinuclear products, 2(2+) and 3(2+), were characterized by (1)H NMR spectroscopy on anodically electrolyzed solutions of 1 at low temperatures in CD(2)Cl(2)/[NBu(4)][BArF(24)]. The variable temperature NMR behavior of these solutions showed that 3(2+) and 2(2+) take part in a thermal equilibrium, the latter being dominant at the lowest temperatures. Ruthenocene hydride, [1-H](+), was also identified as being present in the electrolysis solutions. The oxidation of ruthenocene is shown to be an inherent one-electron process, giving a ruthenocenium ion which is highly susceptible to reactions that allow it to regain an 18-electron configuration. In a dry non-donor solvent, and in the absence of nucleophiles, this electronic configuration is attained by self-reactions involving formation of Ru-Ru or Ru-C bonds. The present data offer a mechanistic explanation for the previously described results on the chemical oxidation of osmocene (Droege, M.W.; Harman, W.D.; Taube, H. Inorg. Chem. 1987, 26, 1309) and are relevant to the manner in which sigma:eta(5)-C(5)H(4)-complexes of other second and third-row metals are formed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.