Abstract

Retigabine is an antiepileptic drug and the first voltage-gated potassium (Kv) channel opener to be approved for human therapeutic use. Retigabine is thought to interact with a conserved Trp side chain in the pore of KCNQ2-5 (Kv7.2-7.5) channels, causing a pronounced hyperpolarizing shift in the voltage dependence of activation. In this study, we investigate the functional stoichiometry of retigabine actions by manipulating the number of retigabine-sensitive subunits in concatenated KCNQ3 channel tetramers. We demonstrate that intermediate retigabine concentrations cause channels to exhibit biphasic conductance-voltage relationships rather than progressive concentration-dependent shifts. This suggests that retigabine can exert its effects in a nearly "all-or-none" manner, such that channels exhibit either fully shifted or unshifted behavior. Supporting this notion, concatenated channels containing only a single retigabine-sensitive subunit exhibit a nearly maximal retigabine effect. Also, rapid solution exchange experiments reveal delayed kinetics during channel closure, as retigabine dissociates from channels with multiple drug-sensitive subunits. Collectively, these data suggest that a single retigabine-sensitive subunit can generate a large shift of the KCNQ3 conductance-voltage relationship. In a companion study (Wang et al. 2018. J. Gen. Physiol. https://doi.org/10.1085/jgp.201812014), we contrast these findings with the stoichiometry of a voltage sensor-targeted KCNQ channel opener (ICA-069673), which requires four drug-sensitive subunits for maximal effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.