Abstract

Ionospheric equivalent currents are defined as spherical sheet currents, which reproduce the observed magnetic disturbances below the ionosphere. One way of determining these currents is to place several so called spherical elementary current systems (SECS) in the ionospheric height and to solve an inversion problem for the amplitudes of these systems. In previous studies this method has been applied to two-dimensional data sets, having both latitudinal and longitudinal spatial coverage (2D SECS method). In this paper a one-dimensional variant of this method (1D SECS) is developed. The 1D SECS method can be used even in those situations where the data set is one dimensional, e.g. with one meridionally aligned magnetometer chain. The applicability of the 1D SECS method is tested using both synthetic and real data. It is found that in real situations the errors in the 1D SECS results are 5—10% in current density profiles and ~5% in integrated currents, when compared to the results of the more accurate 2D SECS method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call