Abstract

An analytical solution for the space-time variation of contaminant concentration in one-dimensional transient groundwater flow in a homogenous semi-infinite aquifer, subjected to time-dependent source contamination, is derived. The uniform and time varying dispersion along transient groundwater flow is investigated under two conditions. First, the flow velocity distribution in the aquifer is considered as a sinusoidally varying function, and second, the flow velocity distribution is treated as an exponentially increasing function of time. It is assumed that initially the aquifer is not solute free, so the initial background concentration is considered as an exponentially decreasing function of the space variable which is tending to zero at infinity. It is assumed that dispersion is directly proportional to the square of the velocity, noting that experimental observations indicate that dispersion is directly proportional to the velocity with a power ranging from 1 to 2. The analytical solution is illustrated using an example and may help benchmark numerical codes and solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.