Abstract

The recent creation of Townes solitons (TSs) in binary Bose-Einstein condensates and experimental demonstration of spontaneous symmetry breaking (SSB) in solitons propagating in dual-core optical fibers has drawn renewed interest in the TS and SSB phenomenology in these and other settings. In particular, stabilization of TSs, which are always unstable in free space, is a relevant problem with various ramifications. We introduce a system which admits exact solutions for both TSs and SSB of solitons. It is based on a dual-core waveguide with quintic self-focusing and fused (localized) coupling between the cores. The respective system of coupled nonlinear Schrödinger equationsgives rise to exact solutions for full families of symmetric and asymmetric solitons, which are produced by the supercritical SSB bifurcation (i.e., the symmetry-breaking phase transition of the second kind). Stability boundaries of asymmetric solitons are identified by dint of numerical methods. Unstable solitons spontaneously transform into robust moderately asymmetric breathers or strongly asymmetric states with small intrinsic oscillations. The setup can be used in the design of photonic devices operating in coupling and switching regimes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call