Abstract
We investigate the thermomechanical behavior of 3D printing of metals in the laser-based powder bed fusion (L-PBF) process, also known as selective laser melting (SLM). Heat transport away from the printed object is a limiting factor. We construct a one-dimensional thermoviscoelastic continuum model for the case where a thin fin is being printed at a constant velocity. We use a coordinate frame that moves with the printing laser, and apply an Eulerian perspective to the moving solid. We consider a steady state similar to those used in the analysis of production processes in the process industry, in the field of research known as axially moving materials. By a dimensional analysis, we obtain the nondimensional parameters that govern the fundamental physics of the modeled process. We then obtain a parametric analytical solution, and as an example, illustrate it using material parameters for 316L steel. The nondimensional parameterization has applications in real-time control of the L-PBF process. The novelty of the model is in the use of an approach based on the theory of axially moving materials, which yields a new perspective on modeling of the 3D printing process. Furthermore, the analytical solution is easy to implement, and allows fast exploration of the parameter space.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.