Abstract

One dimensional (1D) silicon nanostructures have attracted significant interest as an anode material for lithium ion batteries (LIBs) as its 1D geometry accommodates the large volume change of the Si during cycling and enables facile electron transport during all stages of operation. Furthermore, the high aspect ratio of 1D Si nanostructures enables us to investigate atomic-scale mechanisms of the lithiation process and corresponding volume change behavior. Various 1D nanostructures with different morphologies and compositions have been explored to achieve a robust cycle performance, reversible morphological changes, and high rate capabilities. In this Perspective, we summarize the recent significant advances of 1D Si nanostructures and discuss electrode design strategies based on the recent geometry and composition engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.