Abstract
Recently a number of macro-element models have been formulated for assessing the performance of shallow foundations during earthquake loading. These provide a computational tool that represents the nonlinear dynamic behavior of the foundation in a manner much simpler than finite element modelling; consequently, they are useful for preliminary design. The basis of this chapter is the shallow foundation moment-rotation pushover curve, which is bracketed by the rotational stiffness at small deformations, determined by the small strain stiffness of the soil, and the moment capacity, which is a function of the soil shear strength and the vertical load carried by the foundation. Between these two limits there is a curved transition. The paper argues that when the vertical load carried by an embedded foundation is a small fraction of the vertical bearing strength, the moment-rotation behavior dominates the response. This means that the structure-foundation system can be reduced to a single degree of freedom (SDOF) model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.