Abstract
The service life of catalysts is a key aspect limiting the commercial development of proton exchange membrane fuel cells (PEMFCs). In this paper, a one-dimensional degradation model of a Pt-Co alloy catalyst in the cathode catalytic layer (CCL) of a PEMFC is proposed, which can track the catalyst size evolution in real time and demonstrate the catalyst degradation during operation. The results show that severe dissolution of particles near the CCL/membrane leads to uneven aging of the Pt-Co alloy catalyst along the CCL thickness direction. When the upper potential limit (UPL) is less than 0.95 V, it does not affect the catalyst significantly; however, a slight change may cause great harm to the catalyst performance and service life after UPL > 0.95 V. In addition, it is found that operating temperature increases the Pt mass loss on the carbon support near the CCL/membrane side, while it has little effect on the remaining Pt mass on the carbon support near the CCL/GDL side. These uncovered degradation mechanisms of Pt-Co alloy provide guidance for its application in PEMFCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.