Abstract

Steady State Tokamak-2 (SST-2) will be an intermediate fusion machine before Indian DEMOnstration power reactor (DEMO) development to realise the reactor technologies. It is designed for fusion gain $$Q=5$$ and fusion power in the range of 100–300 MW. Nuclear design analyses of SST-2 machine have been carried out to support the conceptual design work. Analyses have been carried out for two breeding blanket concepts: Indian lead–lithium ceramic breeder (LLCB) and helium-cooled ceramic breeder (HCCB). The analyses assess the tritium production and radiation shielding capability of the machine referring to the engineering design parameters. In this study, one-dimensional radiation transport calculations have been performed to assess the SST-2 nuclear responses for 1 full power year (FPY) operation. Nuclear responses such as tritium breeding ratio (TBR), various radiation loads to toroidal field (TF) coil have been calculated to obtain the radial build-up of SST-2 capable of breeding tritium and satisfying the shielding requirements. The assessment has been made using the ANISEN code and FENDL 2.1 cross-section library. It is observed that the TBRs with LLCB and HCCB blankets are 0.85 and 0.94, respectively. Shielding calculations confirm that the radial build is sufficient to protect the superconducting TF coils for 1 FPY.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.