Abstract

One-dimensional (1D) nanostructures are believed to play a significant role on the horizon of material science, and are a promising class of ideal high performance candidates for energy storage and conversion owing to their unique optical, structural and electronic properties. In particular, 1D nanostructure-based photocatalysts have been attracting ever-growing research attention. In this review article, we mainly focus on systematically summarizing the applications of 1D-based nanocomposites in photocatalysis, including nonselective processes for the degradation of pollutants, direct solar energy conversion to storable fuels and selective transformations for organic synthesis. Particularly, we explore the new directions for boosting the photocatalytic performances of 1D nanostructures, including graphene-1D nanocomposites, surface modification, 1D core–shell nanostructures and different exposed facet effects. It is hoped that this article will promote the efficient harnessing and rational development of the outstanding structural and electronic properties of 1D nanostructures to design more efficient 1D-based photocatalysts towards numerous applications in the field of solar energy conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.