Abstract

ABSTRACTUnderstanding crystallization mechanism of random copolymers is beneficial for the design and development of new polymeric materials. We performed dynamic Monte Carlo simulations to investigate the crystallization behaviours of random copolymers in polymer solutions induced by one-dimensional nanofiller. The effects of comonomer content on crystallinity and crystalline morphology were studied in detail. In the copolymers with relatively low comonomer contents, the final absolute crystallinity is independent of comonomer contents, while in the copolymers with relatively high comonomer contents the final absolute crystallinity decreases with increasing comonomer contents. In addition, the one-dimensional nanofiller can induce the formation of nanohybrid shish-kebab structures in the copolymers with low comonomer contents. However, in the copolymer with very high comonomer content, the presence of a large number of comonomers with no ability of parallel arrangements hinders the formation of nanohybrid shish-kebab structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call