Abstract

In order to study the influence of wind mixing on the spring variability of the plankton production of the north western Corsican coastal area, a one-dimensional (1D), vertical, coupled hydrodynamic/biological model (ECOHYDROMV) is used. A hydrodynamic 1D model of the water column with a k– l turbulent closure is applied. The biological model comprises six state variables, representing the plankton ecosystem in the spring period: phytoplankton, copepods, nitrate, ammonium, particulate organic matter of phytoplanktonic origin and particulate organic matter of zooplanktonic origin. The system is influenced by turbulence (expressed by the vertical eddy diffusivity), temperature and irradiance. The model takes into account momentum and heat surface fluxes computed from meteorological data in order to simulate a typical spring atmospheric forcing for the considered area. Results show that primary production vertical structure is characterised by a subsurface maximum which deepens with time and is regulated by the opposite gradients of nitrate concentration and irradiance. Surface plankton productivity is mainly controlled by turbulent vertical transport of nutrients into the mixed layer. The short time scale variability of turbulent mixing generated by the wind appears to be responsible for the plurimodal shape of plankton blooms, observed in the considered area. Furthermore, the model is applied to the study of the spring evolution of the plankton communities off the bay of Calvi (Corsica) for the years 1986 and 1988. In order to initiate and validate the model, time series of hydrological, chemical and biological data have been used. The model reproduces accurately the spring evolution of the phytoplankton biomass measured in situ and illustrates that its strong variability in those years was in close relation to the variability of the wind intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.