Abstract
A one-dimensional model for the numerical simulation of transport effects in small-scale, i.e., low Reynolds number, shock tubes is presented. The conservation equations have been integrated in the lateral directions and three-dimensional effects have been introduced as carefully controlled sources of mass, momentum and energy, into the axial conservation equations. The unsteady flow of gas behind the shock wave is reduced to a quasi-steady flow by choosing a coordinate system attached to the shock. The boundary layer problem is thereby reduced to a laminar solution, similar to the Blasius solution, with the exception that the wall velocity can be nonzero. The resulting one-dimensional equations are then solved numerically using a two-step Lax-Wendroff/ MacCormack scheme with flux correction transport. For validation purposes, comparisons are performed against previously published shock structure and low Reynolds number shock tube experiments; good agreement is observed. The model has been used to predict the performance of a 10µm shock tube and the result of this simulation shows the possibility of shock wave disappearance at lower pressure ratios for a micro-scale shock tube.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.